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We introduce a numerical complexity reduction method for the automatic identification and analysis of
dynamic network decompositions in �bio�chemical kinetics based on error-controlled computation of a minimal
model dimension represented by the number of �locally� active dynamical modes. Our algorithm exploits a
generalized sensitivity analysis along state trajectories and subsequent singular value decomposition of sensi-
tivity matrices for the identification of these dominant dynamical modes. It allows for a dynamic coupling
analysis of �bio�chemical species in kinetic models that can be exploited for the piecewise computation of a
minimal model on small time intervals and offers valuable functional insight into highly nonlinear reaction
mechanisms and network dynamics. We present results for the identification of network decompositions in a
simple oscillatory chemical reaction, time scale separation based model reduction in a Michaelis-Menten
enzyme system and network decomposition of a detailed model for the oscillatory peroxidase-oxidase enzyme
system.
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I. INTRODUCTION

High-quality experimental data become increasingly
available for detailed modeling of complex chemical reaction
systems in both technical processes and cell biology. A cen-
tral modeling task of general significance and interest is to
identify the minimum kinetic model which can be used in-
stead of the full reaction mechanism while retaining a de-
sired degree of accuracy for the essential dynamical features.
This is equivalent to identifying a network decomposition in
terms of a submanifold on which the “dominant” part of the
system dynamics takes place �1�, which is a central problem
in dynamical systems theory.

In systems biology �2�, complexity and model reduction
become increasingly important in particular for the analysis
of large-scale biochemical networks. They require reliable
and efficient numerical methods for both reducing the effec-
tive dimensionality of the models and identifying network
modularizations and dynamical couplings between compo-
nents as crucial guides on the way towards an elucidation of
the systems’ mechanistic functioning. A largely unsolved
central problem is the final interpretation of numerical simu-
lation results to obtain information about mechanistic aspects
of a cellular process. The latter involves inter-alia the analy-
sis of the kind and extent of interactions between network
components and subsystems and other dynamical features
that are finally related to physiological functions. However,
these are largely obscured in high-dimensional phase space
associated with detailed kinetic models and it is extremely
difficult to extract useful information by simply looking at
hundreds or thousands of time series for single biochemical
species �3�.

For these reasons, automatic numerical methods will be
crucial to reduce the dimensionality of kinetic models as far
as possible on the one hand and on the other hand to aid the
identification of functional network decompositions by re-

ducing the system’s apparent complexity. Since in many bio-
chemical and cellular processes multiple time-scales are in-
volved, a reasonable approach is the identification of time-
scale couplings for system analysis and potential elucidation
of functional couplings of components or subsystems. As the
time-scale composition of nonlinear ODE models may
change significantly when trajectories propagate through
phase space, a dynamical and local �pointwise� analysis per-
formed online during numerical integration is necessary in
most cases. In Ref. �4� a robust implementation of such a
method and its application to a biochemical reaction network
are described. Among the most common approaches to com-
plexity reduction widely used for biochemical reaction net-
works are metabolic control analysis �MCA� �5,6� and sto-
ichiometric network analysis �SNA� �7�. These techniques
have recently been extended from the original application to
steady-state conditions to transient dynamics �8,9�. The ap-
plication of such methods to �bio�chemical reaction networks
can provide considerable insight into the mechanism and as-
sociated significance of the network structure. For a review
on applications see Ref. �10� and references therein. SNA
can, for example, be exploited to analyze bifurcation behav-
ior as a function of the network structure �11� or an identifi-
cation of subnetworks �12�. Schreiber et al. address the im-
portant case of model construction/selection problems
related to the probing of different proposed reaction mecha-
nisms by help of SNA �13� for oscillatory enzyme systems,
among them the peroxidase-oxidase �PO� reaction also
treated in the present work �see Sec. III�.

However, the insight provided by the previous methodolo-
gies into the quantitative dynamic phase space structure with
respect to the relative time evolution of component interde-
pendencies which would help significantly to identify dy-
namical coupling relations between network components is
rather restricted. In order to make an attempt to complement
the scope of successful static network topology and stoichi-
ometry based methods, here, we present a generalized dy-
namic sensitivity analysis approach which is based on the
dynamic coupling analysis of families of trajectories during
the transient time evolution of a dynamical system. Our*Electronic address: lebiedz@iwr.uni-heidelberg.de
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analysis identifies a �local� minimal model dimension and
the corresponding active dynamical modes that decouple
from the remaining modes in the sense of a negligible effect
of perturbations on the essential system dynamics.

II. METHOD AND ALGORITHM

Our numerical algorithm dynamically identifies mode de-
coupling during integration of trajectories in phase space
based on the framework of a generalized sensitivity analysis.
By relaxing and thus enslaving the dynamical modes with
the smallest sensitivity coefficients with respect to the re-
maining ones, this decoupling is exploited for computing the
minimal model dimension consistent with a user defined er-
ror tolerance. The final result of a subsequent singular value
analysis is a network decomposition into modules. Math-
ematically the procedure corresponds to a piecewise approxi-
mation of a full ODE model by a differential algebraic equa-
tion �DAE� model with the algebraic part 0=g�y ,z�
representing the relaxation �enslavement� of modes with
smallest sensitivities under the restriction of a desired accu-
racy for the remaining modes y�t�,

ẋ�t� =
dx

dt
= F�x��ODE� →

ẏ�t� =
dy

dt
= f�y,z� ,0 = g�y,z��DAE� . �1�

From the geometric viewpoint the DAE can be interpreted as
an ODE on a manifold described by the algebraic equations.

Compared to the local time-scale concept developed in
Ref. �4�, our approach is not restricted to local time-scale
decoupling but can in principle identify any form of dynami-
cal decoupling on any finite time horizon in terms of a sen-
sitivity analysis along state trajectories.

The central task in our analysis is the identification of the
large and small sensitivity modes and the decision which of
the latter can be assumed to be relaxed �enslaved� without
causing a too large error in the remaining modes. The algo-
rithm we introduce here presents a robust strategy for solving
this problem numerically and exploiting the results for the
identification of component and subnetwork decoupling in
the full kinetic model under consideration. Our complexity
reduction method is based on the computation of sensitivities
along pieces of a nominal trajectory �on time horizon �0,T��
providing information on the propagation behavior of small
perturbations of the initial value with the phase flow �ap-
proximated by accurate numerical integration� in a first order
�linear� approximation. The final property of interest is the
derivative �sensitivity� of the endpoint of a small trajectory
piece with respect to the initial value. This can be formulated
as

�x�T� = W�T��x�0�, W�T� ª
�x�T�
�x�0�

. �2�

�x�0� and �x�T� are the initial and final perturbations of the
values x�0� ,x�T�, the latter being located on the nominal tra-
jectory in the time interval �0,T�. This sensitivity matrix

W�T� can be computed by integrating ẋ=F�x� numerically
from slightly perturbed initial values x�0�+�x�0� and evalu-
ate finite difference schemes involving the difference be-
tween perturbed and nominal final values divided by the ab-
solute value of the initial perturbation �x�T� /�x�0� for all
coordinate directions. Here, modern adaptive step-size inte-
grators are required for efficient numerical simulation of stiff
and large-scale chemical reaction models. Since the output of
such numerical integration of a trajectory piece does usually
not depend continuously on the input �initial value� due to
error-adaptive switches in integrator step size and/or order, a
naive use of finite differences may lead to severe numerical
problems and low accuracy of the sensitivity information
�14�. In order to compensate such inaccuracies it can be
shown that an integrator accuracy close to the machine pre-
cision �eps� is required for sensitivity accuracies of the order
��eps� �15�. Therefore, this external numerical differentia-
tion generally results in unacceptable long integration times
for large-scale stiff systems.

The internal numerical differentiation �IND� technique
suggested by Bock �16� avoids these disadvantages by freez-
ing the discretization scheme obtained by step-size adaptive
and error-controlled integration of the nominal trajectory and
using this fixed scheme also for the perturbed trajectories. In
this case an integrator accuracy of ��eps� is enough for ob-
taining derivatives in the same accuracy range �16�. IND has
been implemented in the efficient and robust numerical inte-
grator DAESOL �17� which is based on a BDF method
�backward differentiation formula� particularly suitable for
stiff ODE and DAE systems. We use DAESOL as part of our
algorithm for computing nominal trajectories and sensitivi-
ties piecewise on predefined equidistant time intervals
�0,T� , �T ,2T�, … . The length of these intervals represents
the minimal time-scale resolution of our method meaning
that �de�couplings below this step size cannot be resolved.
The final sensitivity output for a trajectory piece is the matrix
W�T� in �2� which will be abbreviated as W in the following.

A well-known theorem in linear algebra �18� assures the
existence of a singular value decomposition for each regular
matrix W�Rn�n, meaning the existence of orthogonal ma-
trices U and V and a diagonal matrix � with

W = U � � � VT, � = diag��i�, i = 1,…,n �3�

and the singular values �i�0 in the matrix �. It follows
directly from the orthogonality of the matrices U and V that
the image of the unit sphere under the operation of W is a
hyperellipse �Fig. 1� because VT represents rotation of the
original coordinate axes without affecting angles and lengths,
the diagonal matrix � stretches or contracts the axes and U
rotates again �18�. The column vectors uj of U, the left sin-
gular vectors, correspond to the half-axes of the image hy-
perellipse. This means that they represent those directions in
phase space in which a contraction/expansion of the initial
perturbation occurs with a factor �i on time horizon �0,T�.
Due to the orthogonality of U these axes are pairwise or-
thogonal vectors �Fig. 1�. The singular values describe the
relative contraction and/or expansion behavior �dynamics of
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the distance� of trajectories without taking twisting around
each other into account.

In the next step the original ODE model is transformed by
an orthogonal coordinate transformation with UT which ro-
tates the original axes into the direction of the left singular
vectors. Then it is assumed that the dynamical modes in the
strongest contracting phase space direction uk �the shortest
semiaxis of the hyperellipse image Wvk=�ku

k with smallest
�k� are fully relaxed already at the initial value. This is
equivalent to setting the scalar product projection of the
ODE vector field onto this direction to zero,

g = ukF�x� = 0. �4�

The result is a DAE system of type �1� in transformed
coordinates

�ẏ, ż� = UTẋ = UTF = �f ,g� = �f ,0� �5�

with �n−1� differential variables y and one algebraic variable
z. The algebraic part can be interpreted as defining the essen-
tial dynamics manifold in phase space enslaving the corre-
sponding dynamical modes to the remaining ones, y=h�z�.
Here lies the connection to many previously described model
reduction techniques based on time-scale separation or simi-
lar concepts like intrinsic low dimensional manifolds
�ILDM� �19�, computational singular perturbation �CSP�
�20�, minimal entropy production trajectories �MEPT� �21�,
Fraser’s algorithm �22,23�, sensitivity analysis approaches
�24,25�, and others �see Refs. �26–28� for a comprehensive
overview�. Among the first methods for model reduction in
chemical kinetics were the classical quasisteady state and
partial equilibrium approximations �29–33�, lumping tech-
niques �34,35� and sensitivity analysis �36,37�. Subsequently
computational methods have been developed which include
the ILDM �19,38,39�, CSP methods �20,40,41�, inertial
manifold approaches �42�, dynamic dimension reduction
�4,43�, ideas from optimization �44�, statistical mechanics
approaches to extract essential information from models and
data �45�, iterative trajectory based methods to find attracting
manifolds �22,23,46–48� and thermodynamic projection op-
erator methods �49�, to name just the most important which

came into broader applications. Many of these methods aim
at computing slow attracting manifolds that bundle trajecto-
ries in phase space and describe the essential “long-term”
dynamics of the system assuming fast dynamical modes to
be relaxed. Since fast dynamical modes cause strong contrac-
tion in the corresponding phase space direction, this is a
special case of our more general sensitivity based approach
as will be demonstrated for a simple biochemical enzyme
system later.

The main feature of the method presented here is a com-
bination of flow-maps and their derivative with orthogonal
coordinate transformation based singular value decomposi-
tion, error-controlled maximal relaxation of dynamical
modes and finally computation of unique contributions of
each chemical species to the mutually orthogonal active and
relaxed subspace decomposition. The final results provide
useful insight into the dynamic network coupling structure as
demonstrated for three example applications in the next sec-
tion.

For the computation of consistent initial conditions for the
DAE system �1� which correspond to a point on the “slav-
ing” manifold 0=g�y ,z�, we start from the original ODE
initial value (y�0� ,z�0�)=UTx�0� fixing the variables y�0�
and relaxing z�0� to zrelax�0� by solving the nonlinear equa-
tion system �4�. This is done by a generalized Newton itera-
tion with a homotopylike continuation method implemented
within the DAESOL code �17�. In order to check if the re-
laxation assumption for the direction of strongest contraction
z and therefore the replacement of the full ODE model by a
DAE approximation �1� is allowed we introduce a suitable
error criterion. After integration of both the transformed
ODE and DAE systems from the original initial value
(y�0� ,z�0�)=UTx�0� and the consistent initial value
(y�0� ,zrelax�0�), respectively, on the same time horizon �0,T�
we require for the relative error in the remaining differential
variables �active modes�

�yi
��T� − yi�T��

�yi�T��
� yTOL, i = 1,…,n − 1 �6�

with yi
��T� denoting the solution of the DAE approximation

and yi�T� the solution of the transformed full ODE. If the
error is less or equal to a user defined desired accuracy yTOL,
the decoupling �reduction of differential variables by one� is
accepted on the considered time horizon and the whole pro-
cedure is repeated with the second strongest contraction
direction. The algorithm runs iteratively until the error
criterion is no longer fulfilled and the resulting DAE system
is considered to be the maximally reduced model with
rd=n−a �reduced dimension� differential variables and a al-
gebraic ones on �0,T�. Then the procedure is repeated for the
next interval �T ,2T� with the previous minimal dimension as
a starting guess that is stepwise increased if necessary and
decreased if possible to save computational effort.

The algorithm offers the possibility of dynamic error-
controlled model reduction of ODE systems with the time
horizon T determining the desired resolution. Even more im-
portant, it allows to analyze time-scale couplings of single
species and/or subsystems of species by exploiting the infor-

FIG. 1. Mapping of a unit sphere of initial perturbations to a
hyperellipse by the propagator matrix W according to Eq. �2�. In the
singular value decomposition �3� of W the left singular vectors ui

correspond to the semiaxes of the ellipse whereas the right singular
vectors vi are the preimages of ui under the linear map W and thus
correspond to those perturbations in phase space contracting or ex-
panding with the factor �i , Wvi=�iu

i. The shortest semiaxes corre-
spond to the fastest contracting directions �those modes with the
smallest sensitivities with respect to the remaining ones�.
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mation in the matrix U which contains those directions in
which perturbations decay strongly without much affecting
the dynamical behavior of the less contracting or the expand-
ing directions. When taking these directions uj as new coor-
dinate axes for the transformed system they can be repre-
sented as linear combination of the “old” coordinate axes
corresponding to the original chemical species. Thus a rela-
tive contribution ri �in %� of each original coordinate i to the
subspace of active dynamical modes �corresponding to new
coordinate directions, uj , j=1,… ,rd� can be determined by
computing the projection of the species coordinate vector
onto the active modes subspace, taking the norm of this pro-
jection and dividing by the sum of this norm and the norm of
the projection into the relaxed subspace,

ri: =

��
j=1

rd

ui
juj�

��
j=1

rd

ui
juj� + � �

j=rd+1

n

ui
juj� , i = 1,…,n . �7�

with ui
j denoting the ith component of the column vector uj.

Thus we identify a relative contribution of each species to
the active dynamics manifold �see, e.g., Fig. 3�.

III. RESULTS AND DISCUSSION

We demonstrate the performance of our method by ana-
lyzing a simple model system which displays oscillatory dy-
namical behavior,

dx1

dt
= 77.27�x2 + x1�1 − 8.375 � 10−6x1 − x2�� ,

dx2

dt
=

1

77.27
�x3 − �1 + x1�x2� ,

dx3

dt
= 0.161�x1 − x3� ,

„x1�0�,x2�0�,x3�0�… = �1,2,3� . �8�

This is a variant of the Oregonator model �50� for the
oscillating Belousov-Zhabotinsky reaction. Figure 2 shows

the minimal dimension of the reduced model computed by
our algorithm along a periodic trajectory. Only during small
parts of the closed phase space orbit are all three variables
strongly coupled. In large parts a single active mode is suf-
ficient to describe the complete dynamics accurately whereas
all other modes can be treated as relaxed.

Figure 3 shows the result of the component analysis �7�
demonstrating that the variables x1 and x3 are in a good ap-
proximation effectively decoupled because they share only a
small contribution to the remaining single active mode. Due
to the orthogonality of the singular vector axes a small con-
tribution to the active modes means a large contribution to
the fast contracting modes that can be regarded as relaxed
�enslaved�. This feature is of central importance for our ap-
proach since previous methods like ILDM or CSP that use
similar mathematical techniques to project the system dy-
namics to a low dimensional manifold are restricted to non-
orthogonal coordinate transformations. In the latter case a
determination of contributions of single system components
to the active and relaxed dynamical modes would not be
uniquely possible. Thus, the final result of our algorithm is
the identification of subsequent dynamic decoupling of two
network components in the Oregonator system and this fits
very well to the results of the numerical simulation for the
full model �Fig. 2� where between t=0 and t=100 a subse-
quent relaxation of x1 and x3 can be observed. The results for
this example application from chemical kinetics demonstrate
the value of our model and complexity reduction approach
for the identification of network couplings in complex dy-
namical systems. It may turn out to be valuable for the analy-
sis of large biochemical networks and provide in particular
important insight into the dynamical structure of their high-
dimensional phase space and potential network modulariza-
tions. To underline the specific suitability of our method for
biochemical reaction networks we present further results for
a simple Michaelis-Menten enzyme system

E + S↔
k±1

ES→
k2

E + P �9�

described by the ordinary differential equation system,

FIG. 2. Left-hand side, numerical simulation of the Oregonator
model �8� using DAESOL �17�. Right-hand side, minimum dimen-
sion for the model �8� as a function of time for approximately 1.3
oscillation periods computed by the presented algorithm with an
error tolerance yTOL=10−2 in �6� and minimum resolution T=2.0
�see �2��. FIG. 3. Oregonator model, Relative contribution ri�t� of each

chemical species xi , i=1, 2, 3 in % to the subspace of active rd
dynamical modes j with corresponding singular vectors uj accord-
ing to Eq. �7�.
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dx1

dt
= − k1�ET − x2�x1 + k−1x2,

dx2

dt
= k1�ET − x2�x1 − k2x2 − k−1x2, �10�

with x1= �S� ,x2= �ES� �substrate and enzyme-substrate-
complex concentrations, respectively�, �ET�= �E�+ �ES�
=100.0 �total enzyme concentration�, rate coefficients

k1=1.0,k−1=1.0,k2=0.5 and initial conditions x1�0�
=100.0,x2�0�=0.

The computational results of our algorithms �Figs. 4 and
5� show that the method successfully identifies a time scale
decoupling and confirms the widely used quasi-steady-state
assumption for the enzyme-substrate complex. Furthermore
the algorithm reliably identifies the validity range of the
QSSA demonstrating that it is not appropriate in the transient
initial phase and the final phase where most of the substrate
has been consumed. In between, the contribution of the
enzyme-substrate-complex dynamics to the slow �active�
subspace is very small and the full dynamics are governed by
the substrate. The plateau between 0 and 20 s represents the

TABLE I. Detailed model of the peroxidase-oxidase reaction coupled to the activation of an enzyme Enz.
The initial condition values are 12.0 �M for O2 and 1.5 �M for Per3+, all other initial concentrations are
zero.

Reaction a Rate expression Constant

�1� NADH+O2+H+→NAD++H2O2 k1�NADH��O2� 3.0 b

�2� H2O2+Per3+→coI k2�H2O2��Per3+� 1.8�107 b

�3� coI+NADH→coII+NAD· k3�coI��NADH� 4.0�105 b

�4� coII+NADH→Per3++NAD· k4�coII��NADH� 2.6�105 b

�5� NAD·+O2→NAD++O2
− k5�NAD·��O2� 2.0�107 b

�6� O2
−+Per3+→coIII k6�O2

−��Per3+� 1.7�106 b

�7� 2O2
−+2H+→H2O2+O2 k7�O2

−�2 2.0�107 b

�8� coIII+NAD·→coI+NAD+ k8�coIII��NAD·� 11.0�107 b

�9� 2NAD·→NAD2 k9�NAD·�2 5.6�107 b

�10� Per3++NAD·→Per2++NAD+ k10�Per3+��NAD·� 1.8�106 b

�11� Per2++O2→coIII k11�Per2+��O2� 1.0�105 b

�12� →NADH k12 0.132

�13� O2�gas�→O2�liquid� k13�O2�eq 4.4�10−3 de

��13� O2�liquid�→O2�gas� k−13�O2� 4.4�10−3 d

�14� Enzinact+O2
−→Enzact

k14�O2
−�5

�Kf
5+�O2

−�5�
0.005 b �k14�

0.4 cf �Kf�
�15� Enzact→Enzinact k15�Enzact� 1.6 d

aPer3+ and Per2+ indicate iron�III� and iron�II� peroxidase, respectively. coI, coII, and coIII indicate the
enzyme intermediates compound I, compound II, and compound III.
bIn M−1 s−1.
cIn M.
dIn s−1.
eThe value of �O2�eq is 12 �M.
fThe amount of Enzinact is assumed to be large compared to Enzact and therefore considered to be constant,
total concentration included in rate constant k14.

FIG. 4. Left-hand side, numerical simulation of the Michaelis-
Menten model �10� using DAESOL �17�. Right-hand side, mini-
mum dimension for the model �8� as a function of time for approxi-
mately 1.5 oscillation periods computed by the presented algorithm
with an error tolerance yTOL=10−2 in �6� and minimum resolution
T=0.3 �see �2��.

FIG. 5. Michaelis-Menten model, relative contribution ri�t� of
each chemical species xi , i=1, 2 in % to the subspace of active rd
dynamical modes j with corresponding singular vectors uj accord-
ing to Eq. �7�.
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regime where the QSSA for the enzyme-substrate complex is
valid due to the high turnover of its formation and dissocia-
tion. Later, the restricted substrate availability is the rate lim-
iting factor and the essential system dynamics is dominated
by the rate of decay of the enzyme-substrate complex. The
results for the Michaelis-Menten system are not surprising at
all, but nicely demonstrate that our algorithm is able to iden-
tify all aspects of the well-known coupling behavior that is
widely exploited in modeling single-enzyme systems.

In order to demonstrate successful applicability to more
complex �bio�chemical reaction mechanisms we analyze a
detailed model �Table I� of the PO enzyme system �51�, see
�52� for a comprehensive overview related to the PO system.
For our decomposition analysis, we artificially add a hypo-
thetical enzyme component Enz to the core model that is
activated by superoxide ions. These ions are known to play a
role as signaling molecules in immune responses which are
closely related to the PO reaction �53�. The latter serves for
the production of reactive oxygen intermediates �ROI� in a
respiratory burst response of immune cells aimed at patho-
gen destruction in intracellular phagosomes. Figure 6 shows
the rich dynamical behavior observed for this enzyme system
ranging from relaxation oscillations to harmonic oscillations
and steady state behavior �long term regime, not shown�. We
assume highly cooperative activity of the added superoxide
activated enzyme Enz with a Hill coefficient n=5 �see reac-
tion 14 in Table I�. Figure 8 depicts the results of the com-
ponent analysis showing the contribution of the chemical
species NAD H2O2 and the activated enzyme Enzact to the
active subspace for the computed minimum model dimen-
sion �Fig. 7�. Obviously these components decouple from the
rest of the network and for all of them a nearly identical
contribution pattern is observed �see Fig. 8�. For comparison

Fig. 9 shows the corresponding active mode contribution of
NADH. The decoupling is expected for the enzyme compo-
nent which has therefore been a posteriori coupled as an
internal standard to the core PO system “by hand” to confirm
that our analysis can successfully identify a subsystem �here
a single enzyme� that is loosely coupled to the full reaction
network. However, the components NAD and H2O2 seem to
decouple as well meaning that a local change in their con-
centrations has very little effect on the dynamical behavior of
the whole system. A decoupling of H2O2 has been described
recently also as a result of a quasi-integral approach to
chemical reaction network reduction �54�. NAD radicals,
however, are known to be centrally involved in mediating an
autocatalysis cycle within the PO reaction �see, for example,
Ref. �13��. Nevertheless, their dynamics seem to decouple
from the network in the sense that small perturbation locally
do not affect the system dynamics essentially. This has been
confirmed by numerical simulations introducing small per-
turbations of NAD concentrations at various time points. Ex-
cept for small time horizons near the maximum amplitude of
relaxation oscillations, the perturbed trajectories relax almost
immediately to the unperturbed trajectory indicating a buff-
ering mechanism for the effect of NAD radicals obviously
caused by the interaction of the whole reaction network.
Probably the decoupling is governed by the fast dynamics

FIG. 6. Numerical simulation of the PO model �Table I� using
DAESOL �17�. Left-hand side, species x6�t�, superoxide ion O2

−;
Right-hand side, species x10�t�, coupled enzyme Enzact.

FIG. 7. Minimum dimension for the PO model �Table I� as a
function of time for two different dynamical regimes �relaxation
oscillations, 0� t�2800 s, and harmonic oscillations, t	2800 s,
see also Fig. 6�, yTOL=10−2 in �6� and minimum resolution
T=20.0 �see �2��.

FIG. 8. PO model, relative contribution ri�t� of the chemical
species xi , i=5, NAD; i=9, H2O2; i=10, Enzact in % to the sub-
space of active rd dynamical modes j with corresponding singular
vectors uj according to Eq. �7�.

FIG. 9. PO model, for comparison with Fig. 8, relative contri-
bution r1�t� of chemical species x1, NADH in % to the subspace of
active rd dynamical modes j with corresponding singular vectors uj

according to Eq. �7�.
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associated with the high reactivity of these radicals.
The minimum dimension analysis �Fig. 7� suggests that in

large parts of the simulated time horizon less than four to
five variables are sufficient to describe the overall dynamics
accurately. Remarkably the full model is only required in
dynamical regimes where the coupled enzyme is activated
�Enzact�. However, this is not causally linked with the pres-
ence of the enzyme, the network analysis yields essentially
the same results if the enzyme is removed from the PO
model. The dimension of the full model is then nine and both
reduced dimension and network coupling structure �data not
shown� remain the same as in the previous case.

In large-scale complex biochemical networks the identifi-
cation of dynamical coupling is by far not as obvious as in
the Michaelis-Menten example system and the analysis of
the PO system shows that in general possible decoupling
cannot be identified intuitively by simply looking at the time

series of species concentrations. The results promise wide
ranging applicability to detailed realistic reaction mecha-
nisms. In sum, our numerical algorithm may help signifi-
cantly to identify and justify approximations aiming at model
reduction on the one hand and to analyze the dynamical
phase space structure on the other hand which provides im-
portant information on mechanistic aspects of dynamical
functions and possible network modularization. Such kind of
analysis is supposed to be a valuable tool for systems biol-
ogy approaches.
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